Effect of confinement on electric field induced orientation of a nematic liquid crystal.
نویسندگان
چکیده
We report the effect of confinement on the electric field induced orientation of a nematic liquid crystal, 4-cyano-4'-hexylbiphenyl (6CB), between mica surfaces. The resonance shear measurement was employed for monitoring changes in the viscosity of 6CB at various surface separation distances (D) with and without an applied electric field. The viscosity depended on the surface separations, and the behaviour for D < ca. 20 nm was quite different from that at D > ca. 20 nm. For D > ca. 20 nm, the viscosity values obtained in the presence of the electric field (ac 1 kHz, 1.87 kV mm(-1), homeotropic orientation) were ca. 2 times higher than the values obtained without the electric field (0 kV mm(-1), planar orientation) due to the difference in the molecular orientation, and were nearly constant. At D < ca. 20 nm, the viscosity of 6CB both with and without the electric field sharply increased and they merged into an identical value at D = 12.5 ± 1.3 nm (Dc), then exhibited a plateau up to D = 6 nm. With the decreasing distance below 6 nm, the viscosity of confined 6CB both with and without the electric field further increased up to more than 100 N s m(-1) at the hard wall thickness of D = ca. 4.0 nm. These results indicated that 6CB molecules both with and without the electric field had the same orientation at D < Dc. The most likely orientation of 6CB was parallel to the surfaces because 6CB was originally in a planar orientation on the mica surface. These results demonstrated for the first time that the effect of confinement exceeded the electric field, thus 6CB molecules could not change their orientation under the electric field at the surface separation below Dc.
منابع مشابه
Three-dimensional electric field visualization utilizing electric-field-induced second-harmonic generation in nematic liquid crystals.
An electric-field-induced second-harmonic-generation signal in a nematic liquid crystal is used to map the electric field in an integrated-circuit-like sample. Since the electric-field-induced second-harmonic-generation signal intensity exhibits a strong dependence on the polarization of the incident laser beam, both the amplitude and the orientation of the electric field vectors can be measure...
متن کاملNematic liquid crystal dynamics under applied electric fields.
In this paper we investigate the coarsening dynamics of liquid crystal textures in a two-dimensional nematic under applied electric fields, using numerical simulations performed using a publicly available liquid crystal algorithm developed by the authors. We consider both positive and negative dielectric anisotropies and two different possibilities for the orientation of the electric field (par...
متن کاملDynamics of electro-orientation of birefringent microsheets in isotropic and nematic liquid crystals.
We study the dynamics of electric field driven multiaxis electro-orientation of birefringent microsheets in both the isotropic and nematic phases of a liquid crystal. For a fixed direction of applied field in the isotropic phase, there are two critical fields above which the microsheets show two orientations. In the nematic phase, it shows three rotations in both planar and homeotropic cells. T...
متن کاملQuasidivergent nematic surface electroclinic effect.
A polyimide coated substrate is treated so that vertical liquid crystal alignment (theta=0) obtains over the temperature range T(NA)< T < T(a), where T(NA) is the nematic-smectic-A transition temperature. When the cell is filled with a chiral liquid crystal whose helical pitch is unwound (surface stabilized), application of an in-plane electric field for T(NA)< T < T(a) induces a nonzero polar ...
متن کاملQuasistatic domains in planar nematic liquid crystals around the dielectric inversion point.
A simple viscoelastic approach is proposed to describe the periodic patterns, characterized by static walls and splay-bend distortion, which appear in samples of nematic liquid crystals having dielectric anisotropy «a dependent on the frequency. The modulated structure, resulting from a steady velocity field v coupled with a steady director field n, is achieved when an electric field is applied...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Soft matter
دوره 10 13 شماره
صفحات -
تاریخ انتشار 2014